3.05827514^(1/7)=k

Simple and best practice solution for 3.05827514^(1/7)=k equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3.05827514^(1/7)=k equation:



3.05827514^(1/7)=k
We move all terms to the left:
3.05827514^(1/7)-(k)=0
We add all the numbers together, and all the variables
-k+3.05827514^(+1/7)=0
We add all the numbers together, and all the variables
-1k+3.05827514^(+1/7)=0
We multiply all the terms by the denominator
-1k*7)+3.05827514^(+1=0
Wy multiply elements
-7k^2+1=0
a = -7; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-7)·1
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*-7}=\frac{0-2\sqrt{7}}{-14} =-\frac{2\sqrt{7}}{-14} =-\frac{\sqrt{7}}{-7} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*-7}=\frac{0+2\sqrt{7}}{-14} =\frac{2\sqrt{7}}{-14} =\frac{\sqrt{7}}{-7} $

See similar equations:

| 10x+25x4=0 | | -z+3z-7=0 | | 1/x+1/110=1/17 | | 5x+18=5x+3 | | .50(9-y)+.20y=3.45 | | 9a^2-12-5=0 | | 110x/(x+110)=17 | | 17=110x/x+110 | | (x/15)=(10/12) | | 8x(x)=225 | | 15+35x=155 | | x=15=10/12 | | .50*9-y+.20y=3.45 | | |1/2x-4|=5 | | (3x+4)(4x+7)=7x | | 10f=12-(2*f) | | 410-5q=110+44 | | x-(x-4)=150 | | 9-2.5x=-10 | | r^2+r-38=0 | | 63x=28 | | (−7.4)+t=9.11 | | 2(8x+56)=32 | | 3x+5/6=2(3x+5)/3 | | 5X+10y=500000 | | 3x-5/2=3(3x1)/5 | | 220-2q=100+q | | 220-2q=110+q | | 2(2x-2(3x2))=3x3 | | 2/3-1=x+1/3 | | 3y(y-8)+2=254 | | x^2+24x=256 |

Equations solver categories